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Positive invariance

The considered IVP:

u′(t) = f (u(t)), ∀t ≥ 0
u(0) = u0,

where f : RN → RN is continuously differentiable.

We assume that there exists a unique solution u(t; u0) for all u0.

Definition
A set C ⊆ RN is called positively invariant for f if ∀u0 ∈ C
u(t; u0) ∈ C holds ∀t ≥ 0.



Positive invariance, cont’d

Theorem
(Explicit Euler condition) A nonempty, convex, closed set C is
positively invariant for f if there exists a real, positive ε constant,
such that the containment relation v + εf (v) ∈ C holds ∀v ∈ C.

⇒ In this case we say that C is positively invariant for f w.r.t. ε.

Lemma
If C is nonempty, convex, and compact, and f 6≡ 0, then the set of
ε values resulting in positive invariance is (0, εmax ] for some
εmax ∈ R.



Discrete positive invariance

Definition (restricted to one-step schemes)

Let us given f , u0, and a τ > 0 stepsize, and let us denote the
considered integration scheme (e.g., from the RK family) by F , i.e.

un+1 = un + τF (un, τ, f ), i = 0, . . .

A nonempty, convex, closed set C ⊆ RN is called discrete positively
invariant (d.p.i.) for F w.r.t. the stepsize constant τ∗ > 0, if

∀τ ∈ (0, τ∗], ∀u0 ∈ C, ∀un ∈ C ⇒ un+1 ∈ C, n = 0, . . .

⇒ If C is nonempty, convex, and compact, and F 6≡ 0, then the set
of τ∗ values resulting in d.p.i. is (0, τmax ] for some τmax ∈ R.



The considered integration schemes

1. Explicit Euler method:

I un+1 = un + τF (un, τ, f ) = un + τ f (un)
I verifying un+1 ∈ C for all un ∈ C means that

I C is d.p.i. for F w.r.t. τ , AND
I C is positively invariant for f w.r.t. ε = τ

2. Explicit forms of Rosenbrock W-methods:

I s-stage Rosenbrock method:

un+1 = un +
∑s

i=1 biki ,

ki = τ f (un +
∑i−1

j=1 αijkj) + τQ
∑i

j=1 γijkj , i = 1, . . . , s,

(1)
where τ is the stepsize, Q = f ′(un), and γij , αij , and bi are
the determining coefficients

I Rosenbrock W-method: Q = f ′(u0) or Q ≈ f ′(u0).



The considered integration schemes (cont’d)

2. Explicit forms of Rosenbrock W-methods:

I we need an explicit form un+1 = un + τF (un, τ, f )

I it is essential to make some transformation on the formulas of
the iterative scheme to reduce the interval overestimation as
much as possible

I F can be created from the AMPL model of the (improved)
iterative formulas by using the ampl2dag converter of the
COCONUT Environment

I verifying un+1 ∈ C for all un ∈ C means that C is d.p.i. for F
(= the respective s-stage Rosenbrock-W scheme) w.r.t. τ



Interval arithmetic

Notation:

I I: the set of real, compact intervals. Boldface symbols are
used to denote one- and multidimensional intervals (boxes).

I The lower and upper bound of x : inf(x), sup(x).
I The arithmetic operators ◦ ∈ {+,−, ·, /} and elementary

functions ϕ : R→ R are defined for interval arguments, so
that

I x ◦ y ⊇ {x ◦ y | x ∈ x , y ∈ y}, ϕ(x) ⊇ {ϕ(x) | x ∈ x},
I for computer implementations, the computed enclosures are

mathematically correct even in the presence of floating
point errors.

I Compound functions (f : IN → I) can be built just as for the
real case (naive interval arithmetic). However, the result of
such interval function evaluations usually overestimate the
real range.



Bound constrained interval global optimization

I The problem setting:

min f (x),

s.t. x ∈ x0,

where x0 ∈ IN is the search box, and f : RN → R is twice
continuously differentiable on x0.

I We need complete and rigorous global search: compute
mathematically correct interval enclosures for all global
minimizers and the global minimum.

I We employed the coco gop ex interval B&B solver (Markót
and Schichl, COCONUT Environment, Uni. Vienna).



The basic problem considered in the talk

Problem 1
Let us given a twice cont. diff. function F : RN → RN , a box
v ∈ IN , and a τ ≥ 0. Decide whether the containment relation

v + τF (v) ∈ v

holds for all v ∈ v .

Thus, we have to verify a containment property

I for all points of v
I with mathematical rigor.



Solving Problem 1 with interval global optimization

For boxes, the condition v + τF (v) ∈ v can be decomposed into
vi + τFi (v) ∈ v i , i = 1, . . . ,N.

Lemma
Let us given F , v ∈ IN , and τ ≥ 0. Then the following two
conditions are equivalent:

(a) v + τF (v) ∈ v , ∀v ∈ v ;

(b) the global minima of the 2n2n2n bound constrained GO
problems below are all nonnegative:

min vi + τFi (v)− inf(v i ), s.t. v ∈ v ; i = 1, . . . ,N,

min sup(v i )− (vi + τFi (v)), s.t. v ∈ v ; i = 1, . . . ,N.



Further problems to tackle

Problem 2
Given F and v ∈ IN , find the maximal τ ≥ 0, such that v is d.p.i.
for F w.r.t. τ .

This problem is easily solved to a pre-given precision by solving a
sequence of Problem 1 (iterative refinement).

Problem 3
Let us given F , τ ≥ 0, and a,b ∈ IN , a ⊆ b. Determine a box v
such that a ⊆ v ⊆ b and v is d.p.i. for F w.r.t. τ .

I We developed an algorithm that finds the smallest such v .

I The algorithm is based on iteratively inflating those bounds of
a for which the respective GO problem still has a negative
global minimum.

I One inflating iteration consists of finding the smallest zero
and the smallest fixed point of a one-dimensional function in a
closed interval (easy to obtain with interval arithmetic tools).



Test problem #1: the Robertson reaction model

I describes the kinetics of an autocatalytic reaction

I The ODE: y1
y2
y3

′ =

 −k1y1 + k3y2y3
k1y1 − k2y

2
2 − k3y2y3

k2y
2
2

 ,

where yi , i = 1, 2, 3 are the concentrations of the components,
and k1, k2, k3 are the reaction rate constants.

I In the present setting k1 = 0.04, k2 = 3 · 107, k3 = 104.

I We investigate (discrete) positive invariance in the
neighborhood of the equilibrium point y = (0, 0, 1).

I Since y1 + y2 + y3 = 1, we transformed the system into a
2-dimensional one by the substitution y3 = 1− y1 − y2.



Robertson model, EE method

D.p.i. sets for the Robertson 2-D model, for the regions
a = [0, 10q]2, q = −6, . . . ,−12, b = [0, 0.5]2. For all q, the
second column of the table contains the found d.p.i. set for
τstart = 10−6. The third column contains the largest stepsize value
for which the found set remains d.p.i.

q C = v = (y1, y2) τmax

-6 [0, 1.999998 · 10−1] [0, 10−6] 9.970099 · 10−5

-7 [0, 2.439024 · 10−2] [0, 10−7] 9.997001 · 10−5

-8 [0, 2.493766 · 10−3] [0, 10−8] 9.999700 · 10−5

-9 [0, 2.499375 · 10−4] [0, 10−9] 9.999970 · 10−5

-10 [0, 2.499938 · 10−5] [0, 10−10] 9.999996 · 10−5

-11 [0, 2.499994 · 10−6] [0, 10−11] 9.999999 · 10−5

-12 [0, 2.499999 · 10−7] [0, 10−12] 9.999999 · 10−5



Robertson model, ROS1 scheme (s = 1)

I determining coefficients: γ, α21 = 1, b1 = 1

I for γ = γ− = 1−
√

2/2:

q C = v = (y1, y2) τmax

-6 ([0, 0.199998 · 10−1], [0, 10−6]) 1.411 · 10−4

-9 ([0, 2.499375 · 10−4], [0, 10−9]) 1.414 · 10−4

-12 ([0, 2.499999 · 10−7], [0, 10−12]) 1.414 · 10−4

I for γ = γ+ = 1 +
√

2/2:

q C = v = (y1, y2) τmax

-6 ([0, 0.199992 · 10−1], [0, 10−6]) ≥ 1012

-9 ([0, 2.499375 · 10−4], [0, 10−9]) ≥ 1012

-12 ([0, 2.499999 · 10−7], [0, 10−12]) ≥ 1012



Robertson model, ROS2 scheme (s = 2)

I determining coefficients: γ, γ21 = −2γ, α21 = 1,
b1 = b2 = 0.5

I for γ = γ− = 1−
√

2/2:

q C = v = (y1, y2) τmax

-6 ([0, 0.199997 · 10−1], [0, 10−6]) 2.391 · 10−4

-9 ([0, 2.499375 · 10−4], [0, 10−9]) 2.414 · 10−4

-12 ([0, 2.499999 · 10−7], [0, 10−12]) 2.414 · 10−4

I for γ = γ+ = 1 +
√

2/2:

q C = v = (y1, y2) τmax

-6 ([0, 0.199997 · 10−1], [0, 10−6]) 3.884 · 104

-9 ([0, 2.499375 · 10−4], [0, 10−9]) 4.855 · 107

-12 ([0, 2.499999 · 10−7], [0, 10−12]) 4.856 · 1010



Conclusion

A current, often used assumption within the research community
on positivity methods is that

I the τmax ,S value for a general scheme S is usually somewhere
in the order of τmax ,EE , or at most

I the ratio of the τmax ,S and τmax ,EE remains approximately
constant as the equilibrium is approached

In contrast to that, on the Robertson model, for the 2-stage
Rosenbrock-W scheme with γ = γ+ we found that

I τmax ,ROS2 is at least 8 orders of magnitudes larger than
τmax ,EE

I as the equilibrium point is approched by an order of
magnitude, τmax ,ROS2 (and τmax ,ROS2/τmax ,EE ) also grows by
an order of magnitude


